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The nonunique decomposability of mixtures into pure states, the occurrence of 
dispersion for pure states, the existence of coherent superpositions of pure 
states, and the non-Boolean structure of the associated logic are typical quan- 
tum features. Connections among these properties are examined in the general 
framework of the so-called convex description. 

1. INTRODUCTION 

Moving from the standard formulation of  classical mechanics to the 
standard Hilbert-space formulation of  quantum mechanics, we are faced 
with a number of concomitant features: the pure states take dispersion, 
different pure states no longer need to be orthogonal and there arise 
coherent superpositions of  them, the convex decomposition of  nonpure 
states into pure ones becomes nonunique and the convex set of  states is no 
longer a simplex, there arise mutual incompatibility among observables, 
and the ordered structure of the two-valued observables that form the 
quantum logic loses the distributivity. 

The studies on the foundations of  classical and quantum mechanics, 
the quantum measurement issue (see, e.g. Busch et al., 1991), the recently 
developing theory of  mesoscopic systems, the phase-space representations 
of  quantum theories (see, e.g., Bugajski, 1993), the problem of  nonlinear 
extensions of quantum theories (Bugajski, 1991), and many other issues of  
theoretical physics have pushed the characterization of classicality and of 
quantum behavior into more general frameworks within which one can ask 
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which features should be basic for any classical or quantum theory, and 
how these features are intertwined. 

So, questions arise like (Beltrametti and Cassinelli, 1981a): 
(i) To what extent does the nonunique decomposition of mixed states 

have to accompany the birth of coherent superpositions and of nonorthog- 
onal pure states? 

(ii) To what extent does a theory in which the mixed states have or 
have not a unique decomposition into pure states imply that the pure states 
are or are not dispersion-free? 

(iii) Under which hypotheses is the nondistributivity of the ordered 
structure ~ of the two-valued observables forming the quantum logic 
equivalent to the nonsimplex nature of the set S(~)  of probability mea- 
sures on ~e? 

The nonunique decomposition of nonpure states translates the fact 
that quantum mixtures do not have a memory of the pure states of which 
they are made, i.e., there are infinitely many different families of pure states 
which can generate, by suitable convex combinations, one and the same 
physical state. The existence of coherent superpositions of pure states is 
intrinsic to the linearity of the theory. The presence of dispersion for pure 
states is a typical expression of the nondeterministic nature of the theory. 
The lack of distributivity of ~ accompanies the fact that such a structure 
is no longer an algebraic model of classical logic. Thus by the questions 
above we ask, loosely speaking, to what extent the memory the mixtures 
have of the pure states of which they are made is related to linearity, to 
determinism, or to the kind of logic mirrored by ~ .  

An answer to these questions is the purpose of this paper. Of course, 
the characterization of classical and quantum theories has to be viewed 
within some sufficiently general frame, able to encompass a number of 
physical theories, including those commonly considered as classical, non- 
classical, and of an intermediate type. 

An adequate framework is offered by the so-called convex description 
[see, for a review, Lahti and Bugajski (1985) and Busch et al. (1989)], 
which gives a major role to the shape of the convex set of states of the 
physical system under consideration. Classical theories there appear as 
associated to sets of states which are a type of simplex, whereas a similarly 
simple intrinsic characterization of the set of states of a quantum theory 
appears less definite. In the next section we sketch some basic elements of 
the convex description, and in Section 3 the notion of unique decompos- 
ability of mixed states is given. The questions (i) and (ii) above are then 
discussed in Sections 4 and 5 respectively. 
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The traditional logical approach (see, e.g., Beltrametti and Cassinelli, 
1981b), which gives a major role to the ordered structure of the two-valued 
observables that form the quantum logic (associating Boolean structures to 
classical theories and orthomodular nondistributive structures to quantum 
theories), can be to some extent translated into the convex description by 
the linearization procedure of Rfittimann (1993): we come to this in 
Section 6, where the question (iii) is examined. 

Let us mention that the convex description admits a Hilbert-space 
realization called "generalized quantum mechanics" (Busch et al., 1989), 
and encompasses, besides the standard quantum mechanics, all C*- and 
W*-algebraic theories, including the commutative (hence classical) ones. 

2. CONVEX DESCRIPTION 

Let S O be a convex set whose elements we interpret as states of the 
physical system. Let •So denote the set of extreme points of So, i.e., the set 
of pure states contained in So. 

An affine mapping from So into the convex set M + (N) of all probabil- 
ity measures on the family N(E) of Borel subsets of R is naturally 
interpreted as an observable. Write O(So) for the set of all affine mapping 
from So into M + (~), i.e., all possible observables related to So with values 
in ~. For B sO(So) and �9 e So, B(c0 is thus a probability measure on N(R); 
if we evaluate B(ct) at Xe~(N) ,  we get a number [B(e)](X), contained in 
the unit interval [0, 1] of ~, to be interpreted as the probability that the 
observable B takes a value in X given that the physical system is in the state 
~. When we look at the number [B(e)](X) as defining a function from So 
into [0, 1], we write for this function Es, x, i.e., EB,x(~) = [B(ct)](X). The 
functions of the form EB.x obviously belong to the family A b(So) of all real 
affine bounded functions on So. 

We assume that So is the base of a base normed space, which implies 
that A b(So) is an order-unit Banach space with respect to the pointwise 
ordering. The functions of the form EB.x belong to the order interval [0, e]0 
of A b(S0), where 0 is the constant zero function [the origin of Ab(So)] and 
e the constant unity function [the order unit of Ab(So)]. Actually we have 
more: every element of the order interval [0, e]o is of the form EB, x for some 
B~O(So) and X ~ ( E ) .  Indeed, if uE[0, e]0 we take the observable B~ 
defined by the property that Bu(a) is the probability measure on ~ ( ~ )  
concentrated at the real numbers 1 and 0 where it assumes the values u(a) 
and 1 - u(~), respectively. 

The elements of the order interval [0, e]o of A b(So), hence the functions 
of the form Ea.x, are called effects. For any observable BeO(So) the 
function E s : ~ ( R ) ~ [ 0 ,  e]0 defined by Es(X ) =EB. x is an effect-valued 
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measure on ~(~)  which we call the semispectral resolution of B. Con- 
versely, any effect-valued measure on ~(~)  defines an observable. 

The set [0, e]o is convex, and its extreme elements are called decision 
effects or sharp effects. If u is a sharp effect, then its norm is 1, and e - u 
is also sharp. An observable is called sharp if the range of its semispectral 
resolution is contained in the set d[0, e]o of sharp effects. In standard 
quantum mechanics sharp observables correspond to projection-valued 
measures. 

The weak topology defined on So by [0, e]o, i.e., the weakest topology 
that makes continuous all elements of [0, e]0, will be called the physical 
topology. 

3. UNIQUE DECOMPOSABILITY 

We can now approach the notion of unique decomposability of a 
mixed state into pure states: intuitively it means that any (mixed) state can 
be represented in a unique way as a convex sum, or integral, of pure states. 
Thus, if ~t~S0 has the unique decomposability property, then there must 
exist one and only one measure #~ (possibly discrete) on 8So such that 

u(~) = F u(fl) d#~(fl) for any u~[0, e]o 
Je So 

But to guarantee a precise meaning to this notion, we should be sure 
that the set of pure states is sufficiently rich and meets some regularity 
properties. To overcome this problem, let us first notice that the elements 
of So can be viewed as real bounded functions on Ab(So) [iffeAb(So), just 
define ~(f):=f(~)], hence as elements of the base normed Banach space 
A b(So)*, the dual of A b(S0). More specifically, So is embedded into the base 
S of Ab(So) *. The physical topology of So coincides with the one induced 
on So by the weak* topology of Ab(So) *, and we shall thus call physical the 
weak* topology restricted to S. With respect to this topology, S is compact 
and So is dense in S. Going from So to S, we just add states which, loosely 
speaking, can be approached by the elements of So. 

Since S is compact, the notion of unique decomposability for its 
elements becomes precise without any further assumption. Denoting by dS 
the set of extreme points of S (of course ~So - 8S), we can then state that 

e S is uniquely decomposable into pure states if there exist__ss one and only 
one probability (Radon) measure #~ on the weak* closure dS of ~S (notice 
that 8S does not need to be measurable, while dS does) such that 

=fu( f l )  dlG(fi) for any u~[O,e]o u(~) 
J~  
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If every e s S  is uniquely decomposable, we shall say that S is classical. In 
such a case a number of consequences follow (Alfsen, 1971, pp. 103, 104): 
(1) S is a Bauer simplex, (2) OS is closed, i.e., 6S = OS, (3) S is homeomor- 
phic and affinely isomorphic to the convex set M~-(OS) of all probability 
measures on #S (equipped with the vague topology), and (4) Ab(So) and 
Ab(So) * are vector lattices. 

Notice that every element of A b(So) has a unique continuous extension 
on S, hence Ab(So) is embedded into the order-unit Banach space Ab(S) of 
all real bounded affine functions on S, and consists of the (weak*) 
continuous elements of Ab(S). To emphasize this fact, Ab(So) will also be 
denoted by A(S), the set of all real, affine, (weak*) continuous functions on 
S. Writing [0, e] for the order interval of Ab(S), we have that [0, e]o is a 
(weak*) dense subset of [0, e] and consists of its continuous elements. 

4. CLASSICAL STATES AND COHERENT SUPERPOSITIONS 

The existence of coherent superpositions of quantum pure states 
expresses, in standard quantum mechanics, the linearity of the underlying 
Hilbert space. In the present, more general approach a pure state ~ s aS  will 
be said to be a coherent superposition of two other pure states a~, ~2 ( ~ )  
whenever ~ belongs to the smallest norm-exposed face of S containing both 
al and ~2, i.e., whenever u (~ l )=  u(~2) implies u(~)= u(~l) for any effect 
us[0,  e] (Lahti and Bugajski, 1985). 

If  S is classical, then any of its extreme points is a split face of S (Alfsen, 
1971, p. 144), and we define the projective unit u~s[0, e] associated to ~ by 
u~(fl).-=2, with/~ = 2 a  + ( 1 -  2)a' the unique decomposition o f / ~ s S  into 
the split face {~} and its complementary face {~'}. It is clear that u~(a) = 1, 
while u~(7) = 0 for any 7 sOS\{e}. Hence a cannot be a coherent superpo- 
sition of other pure states: indeed, should e be a coherent superposition of 
el, e2 we would have u~(el )= u~(e2)=0 but u , ( a ) =  1, a contradiction. 
Thus we have the following partial answer to the question (i) of Section 1: 

Proposition 1. In a classical S there are no coherent superpositions. 

The reverse does not hold: the absence of coherent superpositions in S 
does not imply that S is classical. Indeed, there are examples of compact 
convex sets which are not simplexes, but their extreme points are split faces 
so that there are no coherent superpositions (Asimov and Ellis, 1980, pp. 
108-110). Thus there are possible nonclassical models without coherent 
superpositions. 

In the convex approach the notion of orthogonality is usually defined 
by saying that ~ is orthogonal to /~, with e,/~ s aS, whenever there is an 
effect us[0,  e] such that u(e) = 1 and u(//) = 0. Hence, if S is classical then 
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all its pure states are mutually orthogonal. The above mentioned examples 
show that the reverse does not hold: the mutual orthogonality of  all pure 
states of a compact convex set S does not ensure that S is classical. 

5. CLASSICAL STATES AND DISPERSION 

There are three different roots for the appearance of  a nonzero 
dispersion, or variance, of an observable at some state of the physical 
system. First, the state might be nonpure: the occurrence of dispersion is 
then common to both classical and quantum theories. Second, the observ- 
able might be not sharp: this possibility arises in our convex framework in 
which the notion of  observable is more general than usual; it would not 
occur in standard classical mechanics nor in standard quantum mechanics 
where one deals only with sharp observables; in any case the occurrence of  
dispersion due to unsharpness of  the observable is again common to both 
classical and quantum theories. Third, we might have dispersion even if the 
observable is sharp and the state is pure: this possibility, translating a basic 
probabilistic nature of  a theory, is commonly accepted as a peculiar, 
distinguishing feature of  the quantum case. It is precisely this last case that 
we want to pick up and formalize. 

In view of  the correspondence between observables and effect-valued 
measures on ~ ( ~ ) ,  we can handle the notion of  dispersion-free states, 
restricting our attention to those observables which are effects. The disper- 
sion, or variance, of  the effect u s[0, e] in the state ~ s S  is easily seen to be 

V(u, ~) ..= u(~) - u(~)2 

and we have that, for fixed continuous u, V(u, ~) is a weak* continuous and 
concave function on S so that, by the so-called Bauer Maximum Principle 
(see, e.g., Hartk/imper and Neumann, 1974), it attains its minimum on aS, 
while, for fixed a, V(u, a) is a weak* continuous and concave function on 
[0, e], so that it attains its minimum on the set a[0, e] of  extremal elements 
of [0, el, i.e., at some sharp effect (this agrees with the so-called Alfsen 
Dispersion Theorem). 

The above remarks confirm that in order to pick up the dispersion 
coming from the shape of  S, i.e., the one irreducibly inherent in the given 
formal model, we have to restrict consideration to sharp effects and pure 
states. 

The vanishing of the variance V(u, a) means u(=) = 0, 1. In general, a 
sharp effect does not need to attain the values 0 and 1 on aS: when it does 
we shall say that it is definite. Then we are led to say that a sOS is 
dispersion-free if u(e) = 0, 1 for all sharp definite effects. Consequently, S 
will be called nondispersive if all its pure states are dispersion-free. 
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We come now to the question (ii) raised in Section 1, namely the 
connection between the classicality and the nondispersiveness of  the set of  
states. Half of  the question is answered by the following: 

Proposition 2. If S is classical, then it is nondispersive. 

Proof First notice that in a Bauer simplex any norm-exposed face is 
split (Alfsen and Shultz, 1979, Proposition 1.6). If  u is sharp and definite, 
then the splitting property of  u -  ~(1) and u -  ~L(0) implies u(~) = 0, 1 for any 
~OS ,  which means that the pure states are dispersion free, i.e., S is 
nondispersive. III 

The converse, however, is not true: the nondispersiveness of  S does not 
imply that S is classical. We get the simplest counterexample by taking for 
S a square in R 2 (Davies, 1972): the pure states are the vertices of  the 
square, and they are dispersion-free, but S is clearly nonclassical. Less 
trivial counterexamples are provided by the prime simplexes (Alfsen, 1971, 
p. 164; Asimov and Ellis, 1980, p. 124), which are nondispersive but 
nonclassical; they occur in some models of algebraic statistical theories 
(Bratteli and Robinson, 1979, Example 4.3.26). 

Thus the problem arises of seeing which additional conditions should 
be imposed on a nondispersive set of  states to make it classical. To this 
purpose let us recall that a~0S  is said to be projective if there exists a 
P-projection P~ on Ab(So) * such that ~ is the only element of  S which 
belongs to the image of  P~. The P-projections (Alfsen and Shultz, 1976, 
1979; Asimov and Ellis, 1980) provide a direct generalization of  the von 
Neumann-LiJders operations in the quantum measurement theory (Busch 
et al., 1991), of  filters in the operational approach (Bugajski and Lahti, 
1980; Lahti and Bugajski, 1985), of  the conditioning in the noncommuta- 
tive probability theory (Edwards and Riittimann, 1990), and of the Sasaki 
projections in orthomodular lattices (Alfsen and Shultz, 1979). Now we 
have: 

Proposition 3. For a compact convex set S the conditions (i) S is 
nondispersive, (ii) S is the a-convex hull of  OS, and (iii) every element of  
0S is projective, are jointly sufficient to make it classical. 

Proof. Conditions (ii) and (iii) imply that to every projective face {ct}, 
~ 0 S ,  is associated a definite sharp effect u~ (the projective unit associated 
to the P-projection P,)  such that u~-l(1) = {~} (Alfsen and Shultz, 1976, 
Corollary 2.13). Then (i) implies that {~} has to be a split face. Let F be a 
norm-closed proper face of  S. By (ii) we have that OF is nonempty and 
OF = F c~ 0S, so that F is the a-convex hull of  aF. All split faces of  a 
compact convex set form a complete Boolean lattice under set-inclusion 
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ordering (Edwards, 1972, Proposition 3.10); therefore F is a split face, 
being the lattice join of the split faces {e}, eeOF. This means that S is a 
simplex, since all its norm-closed faces are split (Alfsen and Shultz, 1979, 
Proposition 1.6). We have still to prove that S is a Bauer simplex. Any 
weak*-closed ("closed" for short) face is norm closed, hence it is split. 
Moreover, any closed face F defines a closed subset FngS of aS; con- 
versely, the a-convex hull of any closed subset of  aS defines, by (ii), a 
closed face which is split. This one-to-one correspondence between closed 
split faces of S and closed subsets of aS means that the weak* (physical) 
topology of  OS is equivalent to the so-called facial topology, which implies 
that S is a Bauer simplex (Alfsen, 1971, Theorem I1.7.6). �9 

Notice that the conditions (ii) and (iii) above are rather restrictive and 
we might ask whether they could be weakened; they are satisfied, however, 
by the state space of any atomic JBW-algebra (Alfsen and Shultz, 1978), in 
particular they are met in standard quantum mechanics. 

6. CLASSICAL STATES AND BOOLEAN LOGIC 

To handle the question (iii) of Section 1 we need a bridge from the 
"logical" to the "convex" description. To build the bridge starting from the 
side of the convex description, based on the set S of states, it would be 
natural to identify its logic with the poset ~[0, e], orthocomplemented by 
u ~ u • ..= e - u .  Notice that some other possibilities have been considered 
in the literature, e.g., identifying the logic associated to S with the set of 
projective units of  [0, el, or with the set of  P-projections (filters) over 
A(S)*. But for spectral convex sets (Alfsen and Shultz, 1976) these 
structures become isomorphic to ~[0, e], which acquires the property of  
being a complete orthomodular lattice. 

If  S is classical, then A b(S) is a Banach lattice, and it is easy to show 
(Hartk/imper and Neumann, 1974, pp. 7, 8) that O[0, e] is Boolean. 
However, the Boolean character of a[0, e] is not enough to guarantee that 
S is classical: just remark that Ab(S) is a Banach lattice (hence ~[0, e] is 
Boolean) for any simplex S, not necessarily a Bauer one. Nevertheless S is 
"nearly classical" since it is weak* dense in the base Y~ of Ab(S)*: every 
element of  S is thus uniquely decomposable into the extreme points of  the 
Bauer simplex E. 

Let us now face the problem of the bridge between the logical and the 
convex descriptions, starting from the side of  the former. Thus we take 
from the outset an orthomodular lattice La whose elements correspond to 
special two-valued observables of  our physical system, and we denote by 
S ( ~ )  the convex set of all probability measures, or states, on 5e. 
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Every a e ~  defines a real affine (bounded) function ua : S ( ~ ) ~  [0, 1] 
through ua(e):= e(a), a s S .  The family of all such functions determines the 
weak topology on S(s176 to be called the 5e-topology, with respect to 
which S(Z~ o) is compact (Fischer and Rfittimann, 1978). The same family of  
functions, in short s itself, can thus be viewed both as a subset of  the 
order interval [0, e] of  the Banach space Ab(S(Sf)) of all real affine 
bounded functions on S (~ ) ,  and as a subset of  the order interval [0, el0 of  
the Banach space A(S(ZP)) of all real affine Ae-continuous functions on 
S(5r Now, Ab(S(=LP)) is the second Banach dual of A(S(L~a)), hence 
A(S(Le)) is canonically identified with a weak* dense, norm-closed sub- 
space of  A b(s(sY)). In this way the logical pair ~ ,  S ( ~ )  generates the triple 
S (~ ) ,  A(S(Zf)), and Ab(s(LP)) basic for the convexity models. This transi- 
tion from the logical to the convex description is a special case of  the 
linearization procedure worked out by Rfittimann (1993). 

We can now handle the question (iii) of Section 1, which is answered 
by the following: 

Proposition 4. If S(s a) is strongly ordering on s162 then S(s a) is 
classical (i.e., a Bauer simplex) if and only if 5e is Boolean. 

Proof. Suppose S(s a) is a simplex. The strong ordering property of  
S ( d )  implies that any aes is uniquely determined by a (1) '= 

{~ ~S(~,e)l~(a) = 1} = {~z~S(~)]u,,(a) = 1}, and a <-b r a (1) _c b(1), a, b ~ .  
Clearly a ~ is a closed exposed face of  S(La), and if S ( ~ )  is a simplex, any 
a (1) is a split face (Asimov and Ellis, 1980, Theorem 2.7.2). Since the split 
faces of  a compact convex set form a Boolean lattice, the mapping a ~ a ~ 
embeds LP into the Boolean lattice of  the split faces of S ( ~ )  preserving the 
orhtomodular lattice structure of  L~ ~ hence 5e is Boolean. Conversely, 
assume that s is Boolean. The Stone representation theorem and the 
Stone-Weierstrass theorem (Asimov and Ellis, 1980, Theorems 6.14 and 
6.9) lead us now to identify A(S(Sf)) with C(0S(~)) ,  the Banach space of 
real continuous functions on the extreme boundary of  S(s This implies 
that S(5r is homeomorphic and affinely isomorphic to M~-(0S(Se)), which 
is a Bauer simplex. II 

Notice that if S(s is a simplex and is strongly ordering, then 
becomes represented by a subset of ~[0, e] (Alfsen and Shultz, 1976, 
Proposition 10.2 and Corollary 2.13). The problem of identifying the 
elements of  ~r with sharp effects in 0[0, e] in a more general context has been 
examined by Cook (1978), Cook and Rfittimann (1985), and Keller (1989). 
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